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Abstract

In this technical paper we introduce the design and implementation of the

configuration network for GreenDroid chip. Rather than use a traditional

scan chain for this purpose, we develop an innovative way to broadcast

configuration data while the chip is still running and let only the target

node capture data and apply to its associated configurable pins. Since the

network is likely to operate in a different clock domain than the rest of the

GreenDroid chip, we also spend effort working on an efficient and reliable

clock domain crossing technique.
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1 Introduction

The design of GreenDroid chip includes multiple instances of embedded IPs such
as PLLs, RAM controllers, bus interfaces and communication cores. I/O pins of
those IPs need to be connected properly, sometimes without the intervention of
the main processor. For example some PLL macro supports dynamic full PLL
configuration via its input pins, and it is better and safer to use an independent
configuration approach instead of using the main processor itself, to prevent system
from halting in case of configuration fault.

Our design of the configuration network is to safely and easily program some
embedded IP block pins of interest. Because configurations have to apply on-the-
fly to programmable pins, some of which are critical (e.g., PLL pins), this design
has to be competent in the follows.

• Consume minimum number of chip I/O pads

• Operate independently of the rest part of the chip

• Apply vector configuration values atomically to pins

• Prevent metastability in case of clock domain crossing

Therefore our design is implemented with only two I/O pads, one for its own clock
and the other for 1-bit serial input; they are fed by a configuration driver residing
outside the GreenDroid chip. The configuration network is composed of multiple
config nodes and relay nodes. Each config node is associated to several closely
located programmable pins and it extracts configuration value from the input and
apply it to those pins. A relay node simply forwards input bit streams to output,
and is used to connect adjacent config nodes and span the configuration network.
The serial input bits are broadcast to all nodes in the network, and each config node
only captures and decodes these designated for it. A configuration value is applied
to IP block pins only when the value is completely received and decoded to ensure
atomicity. Also clock domain crossing and precautions of entering metastability
state are implemented in each config node.

The remainder of this paper is organized as follows: Section 2 describes the config-
uration network design, including the communication protocol (Section 2.1), config
node (Section 2.2) and relay node (Section 2.3). Section 3 presents our enhanced
design for clock domain crossing by using control path synchronizer (Section 3.2)
and data path stabilizer (Section 3.3).
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2 Design of the Configuration Network
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Figure 1: Configuration Network for GreenDroid
R indicates a relay node and C indicates a config node

Figure 1 illustrates an instance of the configuration network for GreenDroid. The
normal structure of this network is a tree spanned by relay nodes, and one config
node is connected as a leaf to a relay node which is geographically close to the pins
to be configured. Compared to a traditional and linear scan chain, our design is
more flexible in topology and able to follow the system hierarchy.

The input to the root relay node of the tree is connected to the chip I/O pads.
Thereafter input data bits are sent to all branch and leaf nodes. Multiple relay
nodes could be used back-to-back to break critical path between geographically
separated config nodes. Each config node is instantiated with a unique identifier
and it only responds to the data designated for it. This allows a particular config
node to be active without interfering other nodes even though all nodes receive
the same inputs. The design therefore offers safer configuration than a traditional
scan chain does where all nodes in the scan chain need to be configured at the
same time.
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2.1 Communication Protocol

Our communication packet shown in Table 1 for a config node is comprised of a
header and framed data. Different fields in the header and frames in the data are
separated by framing bits, which in our implementation is a single 0 bit. During

f framed data f node id f packet length f valid

Table 1: Communication Packet
Letter f denotes framing bits

communication period the valid field is pushed into a config node first, followed
by the remainder of header and data. In our design the valid field is a two-bit
vector “10” (‘0’ as the least significant bit) which indicates a valid packet has been
received and that is the beginning of a valid packet. Next to the valid field is
the packet length and its value equals the number of bits in one complete packet
(header + data, including framing bits). The node id is an identifier to inform
the recipient node to accept the packet. Following the header is the framed data
composed by inserting framing bits every 8 bits in the data payload. The length
of header is the same for all config nodes, while the framed data varies depending
on the number of configurable pins connected to a particular config node.

Because there is no routing information in the communication protocol, configu-
ration packets are broadcast to all config nodes in the network via the single serial
communication line. Each config node checks the valid bits and node id in the
header. If an arriving packet is valid and designated for itself, the config node
will decode the framed data and apply the value to corresponding programmable
pins; otherwise, the node simply ignores the amount of bits specified by the packet
length in header.

Bit ‘1’ in the valid field is inserted deliberately to make an all ‘0’ packet not
meaningful to any node; therefore we can use consecutive ‘0’s as an NOP for all
nodes. NOPs are useful to flush the configuration network without impact on any
configured value, or to slow down the configuration data changing speed to avoid
packet loss in case the configuration network is driven by a faster clock than the
rest of the chip (refer to Section 3.2).
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2.2 Config Node

Figure 2 shows the top-level diagram of a config node block. Ports and parameters
are explained in Table 2 and Table 3 respectively.

Config Node

clk

reset

config_i

data_o

Figure 2: Config Node

Port Direction Note
clk input clock input for the destination clock domain

reset input reset input for the destination clock domain
config i input encapsulated configuration input
data o output configuration value to be connected to the pro-

grammable pins in the destination clock domain

Table 2: Config Node Ports

The encapsulated config i input is a SystemVerilog packed struct shown below
that is to ease signal assignments in Verilog coding.

1 typede f s t r u c t packed {
2 l o g i c c f g c l k ;

3 l o g i c c f g b i t ;

4 } c o n f i g s ;

Parameter Type Note
id p decimal an unique identifier for each config node

data bits p decimal number of bits in data payload equal to data o
width and the number of configurable pins

default p binary safe default configuration value for pins

Table 3: Config Node Parameters

Apart from the parameters configurable when a config node is instantiated, there
are several local parameters same for all config nodes, which are hidden but the
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Local Parameter Value Note
valid bits 2 number of bits for the valid field in header

packet length bits 8 number of bits to hold a packet length value
node id bits 8 number of bits to hold a node id value

data frame bits 8 number of bits in a data frame
reset sequence bits 10 number of consecutive ‘1’ bits to derive a con-

figuration reset signal
synchronizer length 2 number of flip-flops in the clock domain

crossing synchronizer

Table 4: Config Node Local Parameters

user must also keep them in mind when using a config node or composing a com-
munication packet. Those local parameters are shown in Table 4. Therefore when
assigning a node id the integer value should not exceed the maximum unsigned
value that node id bits can represent. Similarly when composing a long packet its
length value should fit in packet length bits.

Each config node contains a shift register used to buffer serial inputs from config i
and the shift register has the same structure depicted in Table 1. Because the
data payload width varies between different config nodes, shift registers also have
variable lengths to store framed data. Every config node monitors its shift register
and once it detects a valid signal and a matching node id, it extracts payload from
the framed data and assigns corresponding bits to data o; if the packet is valid
but the node id does not match, the config node loads the value of (packet length -
valid bits) into a counter and does not respond to the shift register again (except
reset, see Section 2.4) until the counter decreases to zero.

Once a new configuration value is obtained it is first stored in a register of the same
clock domain as the shift register, and one cycle after the new value is registered
the config node toggles a single bit ready signal to inform the destination clock
domain. Because the destination clock and the configuration clock may differ,
delay for one cycle here is to provide extra time for all the data register outputs
to become stable before they are read in the destination clock domain.

By using the one-way ready signal’s transition as a flag to transmit data crossing
clock domain, we benefit from two ways. One is to ensure the value stored in
the configuration clock domain registers is sampled exactly once when we believe
it’s stable, and the other is to eliminate the cost of a feedback acknowledge path,
which by itself is another crossover signal and raises the chance of circuit going
metastable (refer to Section 3.1).
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2.3 Relay Node

A relay node block is illustrated in Figure 3.

Relay Node

config_i config_o

Figure 3: Relay Node

A relay node does not perform any processing on the data packets and just de-
lays the inputs by one cycle and forwards them losslessly from input to output.
Relay nodes are used to construct a configuration network and break critical path
between geographically separated config nodes.

2.4 Resets

In the configuration clock domain, registers for counters and payload data need
reset at the beginning of use. However, because we only have two spare I/O pads
on the GreenDroid package, there is no way to use an additional signal from the
outside of the chip and thus the reset must be generated from the serial inputs.
To resolve this we use a sequence of bits from the shift register to derive a reset,
and those bits are defined as the least significant reset sequence bits mentioned in
Table 4. At any point in time, if a config node sees the reset sequence in the shift
register, a reset signal is asserted and that is used to clear the counter and load
default p into the data payload register. Our reset sequence is defined as a vector
of reset sequence bits long comprised of all ‘1’s. The framing bits of ‘0’s we inserted
deliberately therefore are crucial to prevent a reset sequence from appearing in a
valid configuration packet.

In the destination clock domain, a reset input is available from a port of a config
node, which is supposed to be the same reset for the rest of GreenDroid chip. The
reset for most of the GreenDroid chip is a synchronous level-sensitive signal, while
in the destination domain of a config node the reset is specially designed to be
synchronous but edge-sensitive. This distinction in reset is a failsafe design in
case metastability (see Section 3.1) seriously impedes normal operating of Green-
Droid. In this scenario we can assert the same reset for both config nodes and the
rest of the chip, and perform pin configuration after the config node recovers and
the rest circuit still remains in reset state.
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3 Clock Domain Crossing

The configuration network is designed to work in a possibly different clock do-
main than the rest of the GreenDroid chip. The clock domain crossing (CDC)
signals pose a challenging issue for design verification because traditional func-
tional simulation using tools like VCS is inadequate to prove crossing signals also
work properly. Within one clock domain, proper static timing analysis (STA) can
guarantee that input data changes do not violate clock setup and hold time con-
straints of the sampling registers; when signals cross from one clock domain to
another unrelated clock domain, STA is not enough to rule out metastability since
CDC signals can change at any time with reference to the destination clock edges.
Therefore to avoid functional errors that can only be detected in late design cycles,
additional effort is taken to raise the level of confidence in our design.

3.1 Metastability

The proper operation of a clocked flip-flop depends on the input signals being
stable within its required setup and hold time window. If the timing requirements
are met, the correct output signal appears after a maximum delay of tco (clock-
to-output time). However, if the setup or hold time constraints are violated, the
flip-flop output may take a much longer, or even infinite time to resolve to a stable
state, and the state to which it resolves to is also non-deterministic. This unstable
behavior of a flip-flop is referred to as Metastability as depicted in Figure 4.
Metastability events may cause wrong signals being latched in the destination flip-
flops and propagate through the rest of the circuit and therefore fail the proper
function of the chip.

Designers often use the following synchronization techniques [3] to reduce the
chance of metastability.

• A chain of flip-flops for 1-bit crossover signal

• Gray-encoding for vector crossover signals

• Handshaking synchronizers for control signals and MUXes for data

• Dual-clock FIFO

Variations of these common techniques are used in different design scenarios. In
our work, we use a combination of a flip-flip sequence and a data MUX, on top

9



1

0
1

0
1

0
1

0

Clock

Async Input

Metastable Output (a)

Metastable Output (b)

tsu th

tco

Figure 4: The Metastability Behavior

of that we develop a customized synchronizing protocol for the control path and
clock domain crossing stabilizers along the data path. The RTL diagram of our
design is depicted in Figure 5.

3.2 Control Path Synchronizer

As described in Section 2, the source clock domain uses a single bit alternate ready
signal to indicate that a new configuration value is ready and stable to be sampled.
In the destination clock domain, two flip-flops are XOR-ed to detect the edge of
a transitioning ready signal. A parameterizable-length (at least two) sequence of
flip-flops is inserted between the source ready and the first edge-detecting flip-flop
to provide extra amount of time for the possible metastable value to resolve and
lowers the probability that the design fails.

Successful operation of our design is based on the assumption that data in the
source clock domain registers does not change before it gets sampled in the desti-
nation domain. Since there is no feedback loop in our design, we guarantee this by
feeding the configuration network with properly designed input sequence to ensure
data is stable during the communication period, which is the length of the syn-
chronizer chain plus three flip-flops (one delay flip-flop in the source clock domain
and the two edge-detecting flip-flops in the destination).
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Figure 5: Our Clock-Domain Crossing Circuit

Compared to a full handshaking communication, the one-way control signal design
has the following advantages:

• Save logic to implement a feedback path.

• Reduce the chance of circuit metastability because the feedback path also
crosses clock domains.

• Respond faster and deliver higher throughputs in transferring data.

and the only disadvantage is that it cannot stall the source data pipeline and
may lose packets if data from source clock domain is changing too frequent. In our
design, we are able to lower the configuration data changing frequency by inserting
NOPs from the input of the network; and therefore eliminate the chance of data
loss, while taking advantage of the benefits from the one-way crossing.

Although the use of synchronizers can not completely eliminate the chance of
entering metastable state, the probabilistic function of Mean Time Between Failure
(MTBF, refer to Section 3.4) qualifies the circuit to be continuously operating in
acceptable duration of time. In RTL development stage of a chip, users of this
design can increase the MTBF by extending the length of the synchronizer chain.

3.3 Data Path Multiplexer

The control signal is typically considered to be safe by using the aforementioned
synchronizers, and our design makes sure the asynchronous data path is through
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when a transition of ready is detected, i.e., when the select input to the data MUX
is logic 1. Nevertheless, one commonly overlooked potential cause of metastability
is the use of this asynchronous data MUX when its select input is logic 0. Ideally,
the MUX should shut off the asynchronous data path completely when its select
input is logic 0, but since the physical implementations of MUXes vary between
different process design kits, we are not convinced that the MUX always works as
we expected. During normal operation of the circuit, toggling of ready does not
happen frequently and this means the destination register at the crossing boundary
spends most of its time pulling data from the MUX’s data path selected by logic 0.
Although this data path is synchronous with respect to the destination clock, we
need extra measures to make sure the stability of this data path is not interfered by
the asynchronous data input. Interferences may also cause unstable signals reach
the register’s input within its setup-hold time window. Therefore we introduce the
clock domain crossing stabilizers right before the MUX’s asynchronous data input
to provide extra protection for the synchronous logic.

B

A

b

b

VddVdd

N1

N2

P1 P2

b

Output
b

Figure 6: 6-MOSFET NAND2 Gate

Our stabilizer is implemented by exactly one NAND2 gate, whose behavior is pre-
dictable, and implementation is simple enough to be done in typical six MOSFETs,
as shown in Figure 6. When one input, for example B, to this NAND2 gate is sta-
ble logic 0, obviously N-MOS N2 is shut off and no matter how input A varies,
the NAND2 output is strongly charged by Vdd and immune to changes of input
A. By contrast, if B is stable logic 1, then N-MOS N2 is on, and now if input A
voltage varies, the NAND2 output also changes accordingly until it resolves to a
state determined by input A. Corresponding voltage divider models are presented
in Figure 7 and Figure 8, respectively. Same analysis also works if we choose A as
the stable input.
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Figure 7: NAND2 Gate with a Stable Logic 0 Input

Deliberately we connect one input of the stabilizer to the same select signal of the
data MUX, and the other input to one asynchronous data line. By this means, we
believe the asynchronous data fluctuations are well filtered by the stabilizers, and
passed to the destination registers only when the crossover data is stable, which
is signaled by a logic 1 on the select line.

Noticeably valid configuration signals are inverted after NAND2 gates, and recov-
ery inverters are inserted after the sampling registers. At the cost of a few more
MOSFETs, we raise our confidence in this clock domain crossing design. Use of
such stabilizers is not merely bound to our circuit and can also be applied to other
clock domain crossing cases whenever crossover data needs to be blocked.

3.4 Mean Time Between Failure

Although the use of synchronizers can reduce the chance that metastable signals
cause the circuit fail, the chance cannot be completely avoided in a clock domain
crossing design. Typically the metric of MTBF is employed to evaluate the likeli-
hood of a circuit fail.

Entering a metastable state is a probabilistic function with reference to the desti-
nation clock frequency, the asynchronous signal transitioning frequency and con-
stants that defines the window in which a transition can cause metastability. A
typical formula [1] [3] [4] [5] to calculate the MTBF of a two-flip-flop synchronizer
sampling asynchronous data is given in (Equation 1).
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Figure 8: NAND2 Gate with a Stable Logic 1 Input

MTBF =
e

Tr
C2

C1 × fdst × fdata

(1)

In (Equation 1), C1 and C2 are constants that depend on the tape-out process and
the operating conditions of the flip-flops; Tr is the maximum allowed amount of
time for the first flip-flop to resolve a metastable state; and fdst and fdata are the
frequencies of the destination clock and the asynchronous data input, respectively
[3]. If the actual resolution time of the first flip-flip exceeds Tr, the metastable
state will propagate to the second one and probably cause functional failures of
the downstream circuit. The Tr for an N-flip-flop synchronizer is the sum of Tr for
each flip-flop in this chain, or that expressed in (Equation 2).

MTBF =
e

PN−1

0
Tr,i

C2

C1 × fdst × fdata

(2)

Constants C1 (sometimes referred to as τ) and C2 (sometimes referred to as T0

or Tw) need to be obtained by contacting the chip foundry, or extracted through
experiments [2] [4]. Apparently one straightforward way to improve the MTBF is
to extend the number of stages in the synchronizer chain, because the accumulated
Tr,i will lead to greater MTBF value. Designers can also use special metastable
hardened flops for increasing the MTBF [3], by varying the C1 and/or C2 constants.
Once the design is taped out, we can also manipulate fdst or more effectively fdata

to improve MTBF.
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4 Conclusions and Future Work

This technical paper has presented the configuration network design for our Green-
Droid chip. We believe this design is better and safer than a traditional scan chain
for the same purpose. We have also taken strong measures in our design trying to
reduce the chance of metastability caused by clock domain crossing. The design
will be evaluated by FPGA simulation and eventually validated by testing the
GreenDroid chip. At this point in time, this configuration network is write-only,
which means data can only be pushed into configurable targets. Adding support
for reading output status of IPs is also useful for system status monitoring.
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